Despite the importance of ranked queries in numerous applications involving multi-criteria decision making, they are not efficiently supported by traditional database systems. In this paper, we propose a simple yet powerful technique for processing such queries based on multidimensional access methods and branch-and-bound search. The advantages of the proposed methodology are: (i) it is space efficient, requiring only a single index on the given relation (storing each tuple at most once), (ii) it achieves significant (i.e., orders of magnitude) performance gains with respect to the current state-of-the-art, (iii) it can efficiently handle data updates, and (iv) it is applicable to other important variations of ranked search (including the support for non-monotone preference functions), at no extra space overhead. We confirm the superiority of the proposed methods with a detailed experimental study.