An event chronicle provides people with an easy and fast access to learn the past. In this paper, we propose the first novel approach to automatically generate a topically relevant event chronicle during a certain period given a reference chronicle during another period. Our approach consists of two core components – a timeaware hierarchical Bayesian model for event detection, and a learning-to-rank model to select the salient events to construct the final chronicle. Experimental results demonstrate our approach is promising to tackle this new problem.