While there are a number of subjectivity lexicons available for research purposes, none can be used commercially. We describe the process of constructing subjectivity lexicon(s) for recognizing sentiment polarity in essays written by test-takers, to be used within a commercial essay-scoring system. We discuss ways of expanding a manually-built seed lexicon using dictionary-based, distributional indomain and out-of-domain information, as well as using Amazon Mechanical Turk to help “clean up” the expansions. We show the feasibility of constructing a family of subjectivity lexicons from scratch using a combination of methods to attain competitive performance with state-of-art research-only lexicons. Furthermore, this is the first use, to our knowledge, of a paraphrase generation system for expanding a subjectivity lexicon.