We provide a general framework for the analysis of the capacity scaling properties in mobile ad-hoc networks with heterogeneous nodes and spatial inhomogeneities. Existing analytical studies strongly rely on the assumption that nodes are identical and uniformly visit the entire network space. Experimental data, however, have shown that the mobility pattern of individual nodes is typically restricted over the area, while the overall node density is often largely inhomogeneous, due to prevailing clustering behavior resulting from hot-spots. Such ubiquitous features of realistic mobility processes demand to reconsider the scaling laws for the peruser throughput achievable by the store-carry-forward communication paradigm which provides the foundation of many promising applications of delay tolerant networking. We show how the analysis of the asymptotic capacity of dense mobile ad-hoc networks can be transformed, under mild assumptions, into a Maximum Concurrent Flow (MCF) problem over an...