This paper presents a new form of Genetic Programming called Cartesian Genetic Programming in which a program is represented as an indexed graph. The graph is encoded in the form of a linear string of integers. The inputs or terminal set and node outputs are numbered sequentially. The node functions are also separately numbered. The genotype is just a list of node connections and functions. The genotype is then mapped to an indexed graph that can be executed as a program. Evolutionary algorithms are used to evolve the genotype in a symbolic regression problem (sixth order polynomial) and the Santa Fe Ant Trail. The computational effort is calculated for both cases. It is suggested that hit effort is a more reliable measure of computational efficiency. A neutral search strategy that allows the fittest genotype to be replaced by another equally fit genotype (a neutral genotype) is examined and compared with non-neutral search for the Santa Fe ant problem. The neutral search proves to be ...
Julian Francis Miller, Simon L. Harding