Sciweavers

COMBINATORICA
2000

On Cayley Graphs on the Symmetric Group Generated by Tranpositions

14 years 14 days ago
On Cayley Graphs on the Symmetric Group Generated by Tranpositions
Given a connected graph, X, we denote by 2 = 2(X) its smallest non-zero Laplacian eigenvalue. In this paper we show that among all sets of n - 1 transpositions which generate the symmetric group, Sn, the set whose associated Cayley graph has the highest 2 is the set {(1, n), (2, n), . . . , (n - 1, n)} (or the same with n and i
Joel Friedman
Added 17 Dec 2010
Updated 17 Dec 2010
Type Journal
Year 2000
Where COMBINATORICA
Authors Joel Friedman
Comments (0)