This paper addresses the novel problem of characterizing conversational group dynamics. It is well documented in social psychology that depending on the objectives a group, the dynamics are different. For example, a competitive meeting has a different objective from that of a collaborative meeting. We propose a method to characterize group dynamics based on the joint description of a group members' aggregated acoustical nonverbal behaviour to classify two meeting datasets (one being cooperative-type and the other being competitive-type). We use 4.5 hours of real behavioural multi-party data and show that our methodology can achieve a classification rate of upto 100%.