Although the general linear complementarity problem (LCP) is NP-complete, there are special classes that can be solved in polynomial time. One example is the type where the defining matrix is nondegenerate and for which the n-step property holds. In this paper we consider an extension of the property to the degenerate case by introducing the concept of an extended n-step vector and matrix. It is shown that the LCP defined by such a matrix is polynomially solvable as well.
Teresa H. Chu