The ability to identify the mineral composition of rocks and soils is an important tool for the exploration of geological sites. Even though expert knowledge is commonly used for this task, it is desirable to create automated systems with similar or better performance. For instance, NASA intends to design robots that are sufficiently autonomous to perform this task on planetary missions. Spectrometer readings provide one important source of data for identifying sites with minerals of interest. Reflectance spectrometers measure intensities of light reflected from surfaces over a range of wavelengths. Spectral intensity patterns may in some cases be sufficiently distinctive for proper identification of minerals or classes of minerals. For some mineral classes, carbonates for example, specific short spectral intervals are known to carry a distinctive signature. Finding similar distinctive spectral ranges for other mineral classes is not an easy problem. We propose and evaluate data-driven...