Motivation: Array-based comparative genomic hybridization (arrayCGH) has recently become a popular tool to identify DNA copy number variations along the genome. These profiles are starting to be used as markers to improve prognosis or diagnosis of cancer, which implies that methods for automated supervised classification of arrayCGH data are needed. Like gene expression profiles, arrayCGH profiles are characterized by a large number of variables usually measured on a limited number of samples. However, arrayCGH profiles have a particular structure of correlations between variables, due to the spatial organization of bacterial artificial chromosomes along the genome. This suggests that classical classification methods, often based on the selection of a small number of discriminative features, may not be the most accurate methods and may not produce easily interpretable prediction rules. Results: We propose a new method for supervised classification of arrayCGH data. The method is a var...