This paper proposes a new model for the detection of clickbait, i.e., short messages that lure readers to click a link. Clickbait is primarily used by online content publishers to increase their readership, whereas its automatic detection will give readers a way of filtering their news stream. We contribute by compiling the first clickbait corpus of 2992 Twitter tweets, 767 of which are clickbait, and, by developing a clickbait model based on 215 features that enables a random forest classifier to achieve 0.79 ROC-AUC at 0.76 precision and 0.76 recall.