In order for recognition systems to scale to a larger number of object categories building visual class taxonomies is important to achieve running times logarithmic in the number of classes [1, 2]. In this paper we propose a novel approach for speeding up recognition times of multi-class part-based object representations. The main idea is to construct a taxonomy of constellation models cascaded from coarse-to-fine resolution and use it in recognition with an efficient search strategy. The taxonomy is built automatically in a way to minimize the number of expected computations during recognition by optimizing the cost-to-power ratio [3]. The structure and the depth of the taxonomy is not pre-determined but is inferred from the data. The approach is utilized on the hierarchy-of-parts model [4] achieving efficiency in both, the representation of the structure of objects as well as in the number of modeled object classes. We achieve speed-up even for a small number of object classes on the...