We investigate an approach for simultaneously committing to multiple activities, each modeled as a temporally extended action in a semi-Markov decision process (SMDP). For each activity we define a set of admissible solutions consisting of the redundant set of optimal policies, and those policies that ascend the optimal state-value function associated with them. A plan is then generated by merging them in such a way that the solutions to the subordinate activities are realized in the set of admissible solutions satisfying the superior activities. We present our theoretical results and empirically evaluate our approach in a simulated domain.