Event-driven sensor networks operate under an idle or light load and then suddenly become active in response to a detected or monitored event. The transport of event impulses is likely to lead to varying degrees of congestion in the network depending on the sensing application. It is during these periods of event impulses that the likelihood of congestion is greatest and the information in transit of most importance to users. To address this challenge we propose an energy efficient congestion control scheme for sensor networks called CODA (COngestion Detection and Avoidance) that comprises three mechanisms: (i) receiver-based congestion detection; (ii) open-loop hop-by-hop backpressure; and (iii) closed-loop multi-source regulation. We present the detailed design, implementation, and evaluation of CODA using simulation and experimentation. We define two important performance metrics (i.e., energy tax and fidelity penalty) to evaluate the impact of CODA on the performance of sensing ...
Chieh-Yih Wan, Shane B. Eisenman, Andrew T. Campbe