Modern compilers implement a large number of optimizations which all interact in complex ways, and which all have a different impact on code quality, compilation time, code size, energy consumption, etc. For this reason, compilers typically provide a limited number of standard optimization levels, such as -O1, -O2, -O3 and -Os, that combine various optimizations providing a number of trade-offs between multiple objective functions (such as code quality, compilation time and code size). The construction of these optimization levels, i.e., choosing which optimizations to activate at each level, is a manual process typically done using high-level heuristics based on the compiler developer’s experience. This paper proposes COLE, Compiler Optimization Level Exploration, a framework for automatically finding Pareto optimal optimization levels through multi-objective evolutionary searching. Our experimental results using GCC and the SPEC CPU benchmarks show that the automatic constructi...