—The hidden knowledge in social networks data can be regarded as an important resource for criminal investigations which can help finding the structure and organization of a criminal network. However such network based analysis has not been studied in an applied way and remains mostly a manual process. To assist inspectors and intelligence agencies discover this knowledge, we defined a new problem and then proposed a framework for automated network data analysis and deduction approach from multiple social networks by converting to transaction dataset, applying association mining, and statistical methods. By applying a game theory concept in a multi-agent model, we try to design a policy for knowledge discovery and inference fusion. This approach enables police stations to build and deploy P2P applications through a unified medium for finding criminals relationship and identifying suspicious guys.