Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we investigate the discriminative power of colour-based invariants in the presence of large illumination changes between training and test data, when appearance changes due to cast shadows and non-Lambertian effects are significant. Specifically, there are three main contributions: (i) we employ a more sophisticated photometric model of the camera and show how its parameters can be estimated, (ii) we derive several novel colour-based face invariants, and (iii) on a large database of video sequences we examine and evaluate the largest number of colourbased representations in the literature. Our results suggest that colour invariants do have a substantial discriminative power which may increase the robustness and accuracy of recognition from low resolution images.