In this paper we present a parameter optimisation procedure that is designed to automatically initialise the number of clusters and the initial colour prototypes required by data space partitioning techniques. The proposed optimisation approach involves a colour saliency measure used in conjunction with a SOM classification procedure. For evaluation purposes, we have integrated the proposed initialisation technique in an unsupervised colour segmentation scheme based on K-Means clustering and the evaluation has been carried out in the context of the unsupervised segmentation of natural images.
Dana Elena Ilea, Paul F. Whelan