This paper presents the ComBack method for explicit state space exploration. The ComBack method extends the well-known hash compaction method such that full coverage of the state space is guaranteed. Each encountered state is mapped into a compressed state descriptor (hash value) as in hash compaction. The method additionally stores for each state an integer representing the identity of the state and a backedge to a predecessor state. This allows hash collisions to be resolved on-the-fly during state space exploration using backtracking to reconstruct the full state descriptors when required for comparison with newly encountered states. A prototype implementation of the ComBack method is used to evaluate the method on several example systems and compare its performance to related methods. The results show a reduction in memory usage at an acceptable cost in exploration time.