Abstract. This paper proposes a multiple hypothesis tracking for multiple object tracking with moving camera. The proposed model makes use of the stability of sparse optical flow along with the invariant colour property under size and pose variation, by merging the colour property of objects into optical flow tracking. To evaluate the algorithm five different videos are selected from broadcast horse races where each video represents different challenges that present in object tracking literature. A comparison study of the proposed method, with a colour based mean shift tracking proves the significant improvement in accuracy and stability of object tracking.
Mohammad Hedayati, Michael J. Cree, Jonathan Scott