Sciweavers

COCO
2000
Springer

Combinatorial Interpretation of Kolmogorov Complexity

14 years 4 months ago
Combinatorial Interpretation of Kolmogorov Complexity
Kolmogorov’s very first paper on algorithmic information theory (Kolmogorov, Problemy peredachi infotmatsii 1(1) (1965), 3) was entitled “Three approaches to the definition of the quantity of information”. These three approaches were called combinatorial, probabilistic and algorithmic. Trying to establish formal connections between combinatorial and algorithmic approaches, we prove that every linear inequality including Kolmogorov complexities could be translated into an equivalent combinatorial statement. (Note that the same linear inequalities are true for Kolmogorov complexities and Shannon entropy, see Hammer et al., (Proceedings of CCC’97, Ulm).) Entropy (complexity) proofs of combinatorial inequalities given in Llewellyn and Radhakrishnan (Personal Communication) and Hammer and Shen (Theory Comput. Syst. 31 (1998) 1) can be considered as special cases (and a natural starting points) for this translation.
Andrei E. Romashchenko, Alexander Shen, Nikolai K.
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2000
Where COCO
Authors Andrei E. Romashchenko, Alexander Shen, Nikolai K. Vereshchagin
Comments (0)