Sciweavers

NIPS
2007

Combined discriminative and generative articulated pose and non-rigid shape estimation

14 years 28 days ago
Combined discriminative and generative articulated pose and non-rigid shape estimation
Estimation of three-dimensional articulated human pose and motion from images is a central problem in computer vision. Much of the previous work has been limited by the use of crude generative models of humans represented as articulated collections of simple parts such as cylinders. Automatic initialization of such models has proved difficult and most approaches assume that the size and shape of the body parts are known a priori. In this paper we propose a method for automatically recovering a detailed parametric model of non-rigid body shape and pose from monocular imagery. Specifically, we represent the body using a parameterized triangulated mesh model that is learned from a database of human range scans. We demonstrate a discriminative method to directly recover the model parameters from monocular images using a conditional mixture of kernel regressors. This predicted pose and shape are used to initialize a generative model for more detailed pose and shape estimation. The result...
Leonid Sigal, Alexandru O. Balan, Michael J. Black
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2007
Where NIPS
Authors Leonid Sigal, Alexandru O. Balan, Michael J. Black
Comments (0)