Sciweavers

CVPR
2011
IEEE

Compact Hashing with Joint Optimization of Search Accuracy and Time

13 years 4 months ago
Compact Hashing with Joint Optimization of Search Accuracy and Time
Similarity search, namely, finding approximate nearest neighborhoods, is the core of many large scale machine learning or vision applications. Recently, many research results demonstrate that hashing with compact codes can achieve promising performance for large scale similarity search. However, most of the previous hashing methods with compact codes only model and optimize the search accuracy. Search time, which is an important factor for hashing in practice, is usually not addressed explicitly. In this paper, we develop a new scalable hashing algorithm with joint optimization of search accuracy and search time simultaneously. Our method generates compact hash codes for data of general formats with any similarity function. We evaluate our method using diverse data sets up to 1 million samples (e.g., web images). Our comprehensive results show the proposed method significantly outperforms several state-of-the-art hashing approaches.
Junfeng He, Regunathan Radhakrishnan, Shih-Fu Chan
Added 20 Aug 2011
Updated 20 Aug 2011
Type Journal
Year 2011
Where CVPR
Authors Junfeng He, Regunathan Radhakrishnan, Shih-Fu Chang, Claus Bauer
Comments (0)