Sciweavers

GRC
2010
IEEE

A Comparative Study of Threshold-Based Feature Selection Techniques

13 years 9 months ago
A Comparative Study of Threshold-Based Feature Selection Techniques
Given high-dimensional software measurement data, researchers and practitioners often use feature (metric) selection techniques to improve the performance of software quality classification models. This paper presents our newly proposed threshold-based feature selection techniques, comparing the performance of these techniques by building classification models using five commonly used classifiers. In order to evaluate the effectiveness of different feature selection techniques, the models are evaluated using eight different performance metrics separately since a given performance metric usually captures only one aspect of the classification performance. All experiments are conducted on three Eclipse data sets with different levels of class imbalance. The experiments demonstrate that the choice of a performance metric may significantly influence the results. In this study, we have found four distinct patterns when utilizing eight performance metrics to order 11 threshold-based feature ...
Huanjing Wang, Taghi M. Khoshgoftaar, Jason Van Hu
Added 11 Feb 2011
Updated 11 Feb 2011
Type Journal
Year 2010
Where GRC
Authors Huanjing Wang, Taghi M. Khoshgoftaar, Jason Van Hulse
Comments (0)