Sciweavers

ESWA
2008

A comparison of neural network and multiple regression analysis in modeling capital structure

13 years 11 months ago
A comparison of neural network and multiple regression analysis in modeling capital structure
Empirical studies of the variation in debt ratios across firms have used statistical models singularly to analyze the important determinants of capital structure. Researchers, however, rarely employ non-linear models to examine the determinants and make little effort to identify a superior prediction model. This study adopts multiple linear regressions and artificial neural networks (ANN) models with seven explanatory variables of corporation's feature and three external macro-economic control variables to analyze the important determinants of capital structures of the high-tech and traditional industries in Taiwan, respectively. Results of this study show that the determinants of capital structure are different in both industries. The major different determinants are business-risk and growth opportunities. Based on the values of RMSE, the ANN models achieve a better fit and forecast than the regression models for debt ratio, and ANNs are cable of catching sophisticated non-linea...
Hsiao-Tien Pao
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2008
Where ESWA
Authors Hsiao-Tien Pao
Comments (0)