Abstract--This paper considers the noncooperative maximization of mutual information in the Gaussian interference channel in a fully distributed fashion via game theory. This problem has been studied in a number of papers during the past decade for the case of frequency-selective channels. A variety of conditions guaranteeing the uniqueness of the Nash Equilibrium (NE) and convergence of many different distributed algorithms have been derived. In this paper we provide a unified view of the state-ofthe-art results, showing that most of the techniques proposed in the literature to study the game, even though apparently different, can be unified using our recent interpretation of the waterfilling operator as a projection onto a proper polyhedral set. Based on this interpretation, we then provide a mathematical framework, useful to derive a unified set of sufficient conditions guaranteeing the uniqueness of the NE and the global convergence of waterfilling based asynchronous distributed al...