We consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al. [4] that there exists no competitive routing scheme that works on all triangulations, we show that there exists a simple online O(1)-memory c-competitive routing strategy that approximates the shortest path in triangulations possessing the diamond property, i.e. the total distance travelled by the algorithm to route a message between two vertices is at most a constant c times the shortest path. Our results imply a competitive routing strategy for certain classical triangulations such as the Delaunay, greedy, or minimum-weight triangulation, since they all possess the diamond property. We then generalize our results to show that the O(1)-memory c-competitive routing strategy works for all plane graphs possessing both the diamond property and the good convex polygon property. Key words: Online routing, competitive routing, geometric graph, minimum weigh...