We investigate the computational complexity of axiom pinpointing, which is the task of finding minimal subsets of a Description Logic knowledge base that have a given consequence. We consider the problems of enumerating such subsets with and without order, and show hardness results that already hold for the propositional Horn fragment, or for the Description Logic EL. We show complexity results for several other related decision and enumeration problems for these fragments that extend to more expressive logics. In particular we show that hardness of these problems depends not only on expressivity of the fragment but also on the shape of the axioms used.