Several propositional fragments have been considered so far as target languages for knowledge compilation and used for improving computational tasks from major AI areas (like inference, diagnosis and planning); among them are the ordered binary decision diagrams, prime implicates, prime implicants, "formulae" in decomposable negation normal form. On the other hand, the validity problem val(QPROPP S) for Quantified Boolean Formulae (QBF) has been acknowledged for the past few years as an important issue for AI, and many solvers have been designed. In this paper, the complexity of restrictions of the validity problem for QBF obtained by imposing the matrix of the input QBF to belong to propositional fragments used as target languages for compilation, is identified. It turns out that this problem remains hard (PSPACE-complete) even under severe restrictions on the matrix of the input. Nevertheless some tractable restrictions are pointed out.