Sciweavers

COMPGEOM
2010
ACM

On the complexity of sets of free lines and line segments among balls in three dimensions

14 years 5 months ago
On the complexity of sets of free lines and line segments among balls in three dimensions
We present two new fundamental lower bounds on the worst-case combinatorial complexity of sets of free lines and sets of maximal free line segments in the presence of balls in three dimensions. We first prove that the set of maximal non-occluded line segments among n disjoint unit balls has complexity Ω(n4 ), which matches the trivial O(n4 ) upper bound. This improves the trivial Ω(n2 ) bound and also the Ω(n3 ) lower bound for the restricted setting of arbitrary-size balls [Devillers and Ramos, 2001]. This result settles, negatively, the natural conjecture that this set of line segments, or, equivalently, the visibility complex, has smaller worst-case complexity for disjoint fat objects than for skinny triangles. We also prove an Ω(n3 ) lower bound on the complexity of the set of non-occluded lines among n balls of arbitrary radii, improving on the trivial Ω(n2 ) bound. This new bound is however not known to be tight as the only known upper bound is the trivial O(n4 ) boun...
Marc Glisse, Sylvain Lazard
Added 10 Jul 2010
Updated 10 Jul 2010
Type Conference
Year 2010
Where COMPGEOM
Authors Marc Glisse, Sylvain Lazard
Comments (0)