We address the problem of efficient end-to-end network monitoring of path metrics in communication networks. Our goal is to minimize the number of measurements or monitors required to maintain an acceptable estimation accuracy. We present a framework based on diffusion wavelets and nonlinear estimation. Our procedure involves the development of a diffusion wavelet basis that is adapted to the monitoring problem. This basis exploits spatial and temporal correlations in the measured phenomena to provide a compressible representation of the path metrics. The framework employs nonlinear estimation techniques using ℓ1 minimization to generate estimates for the unmeasured paths. We describe heuristic approaches for the selection of the paths that should be monitored, or equivalently, where hardware monitors should be located. We demonstrate how our estimation framework can improve the efficiency of end-to-end delay estimation in IP networks and reduce the number of hardware monitors req...