Compressive sensing (CS) is a new approach for the acquisition and recovery of sparse signals that enables sampling rates significantly below the classical Nyquist rate. Based on the fact that electrocardiogram (ECG) signals can be approximated by a linear combination of a few coefficients taken from a Wavelet basis, we propose a compressed sensing-based approach for ECG signal compression. ECG signals generally show redundancy between adjacent heartbeats due to its quasi-periodic structure. We show that this redundancy implies a high fraction of common support between consecutive heartbeats. The contribution of this paper lies in the use of distributed compressed sensing to exploit the common support between samples of jointly sparse adjacent beats. Simulation results suggest that compressed sensing should be considered as a plausible methodology for ECG compression.
Luisa F. Polania, Rafael E. Carrillo, Manuel Blanc