We discuss and compare two greedy algorithms, that compute discrete versions of Fekete-like points for multivariate compact sets by basic tools of numerical linear algebra. The first gives the so-called "Approximate Fekete Points" by QR factorization with column pivoting of Vandermonde-like matrices. The second computes Discrete Leja Points by LU factorization with row pivoting. Moreover, we study the asymptotic distribution of such points when they are extracted from Weakly Admissible Meshes. 2000 AMS subject classification: 41A10, 41A63, 65D05.