Knowing the degree of antonymy between words has widespread applications in natural language processing. Manually-created lexicons have limited coverage and do not include most semantically contrasting word pairs. We present a new automatic and empirical measure of antonymy that combines corpus statistics with the structure of a published thesaurus. The approach is evaluated on a set of closest-opposite questions, obtaining a precision of over 80%. Along the way, we discuss what humans consider antonymous and how antonymy manifests itself in utterances.
Saif Mohammad, Bonnie J. Dorr, Graeme Hirst