Background: Advances in biotechnology and in high-throughput methods for gene analysis have contributed to an exponential increase in the number of scientific publications in these fields of study. While much of the data and results described in these articles are entered and annotated in the various existing biomedical databases, the scientific literature is still the major source of information. There is, therefore, a growing need for text mining and information retrieval tools to help researchers find the relevant articles for their study. To tackle this, several tools have been proposed to provide alternative solutions for specific user requests. Results: This paper presents QuExT, a new PubMed-based document retrieval and prioritization tool that, from a given list of genes, searches for the most relevant results from the literature. QuExT follows a concept-oriented query expansion methodology to find documents containing concepts related to the genes in the user input, such as p...