We consider two-player games which are played on a finite state space for an infinite number of rounds. The games are concurrent, that is, in each round, the two players choose their moves independently and simultaneously; the current state and the two moves determine a successor state. We consider omega-regular winning conditions on the resulting infinite state sequence. To model the independent choice of moves, both players are allowed to use randomization for selecting their moves. This gives rise to the following qualitative modes of winning, which can be studied without numerical considerations concerning probabilities: sure-win (player 1 can ensure winning with certainty), almost-sure-win (player 1 can ensure winning with probability 1), limit-win (player 1 can ensure winning with probability arbitrarily close to 1), bounded-win (player 1 can ensure winning with probability bounded away from 0), positive-win (player 1 can ensure winning with positive probability), and exist-w...
Luca de Alfaro, Thomas A. Henzinger