We deal with the iterative solution of linear systems arising from so-called dual-dual mixed finite element formulations. The linear systems are of a two-fold saddle point structure; they are indefinite and ill-conditioned. We define a special inner product that makes matrices of the two-fold saddle point structure, after a specific transformation, symmetric and positive definite. Therefore, the conjugate gradient method with this special inner product can be used as iterative solver. For a model problem, we propose a preconditioner which leads to a bounded number of CG-iterations. Numerical experiments for our model problem confirming the theoretical results are also reported.
Gabriel N. Gatica, Norbert Heuer