We show that the space of polygonizations of a fixed planar point set S of n points is connected by O(n2 ) “moves” between simple polygons. Each move is composed of a sequence of atomic moves called “stretches” and “twangs”. These atomic moves walk between weakly simple “polygonal wraps” of S. These moves show promise to serve as a basis for generating random polygons.
Mirela Damian, Robin Y. Flatland, Joseph O'Rourke,