Boolean satisfiability problems are an important benchmark for questions about complexity, algorithms, heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered around the structure and connectivity of the solution space. Motivated by this work, we study structural and connectivity-related properties of the space of solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer's framework. On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be induced by the solutions of Boolean formulas, as well as for the diameter of the connected components of the solution space. On the computational side, we establish dichotomy theorems for the complexity of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our results assert that the intractable side of the computational dichotomies is PSPACE-complete, while the tractable ...
Parikshit Gopalan, Phokion G. Kolaitis, Elitza N.