While the fault repair capability of Evolvable Hardware (EH) approaches have been previously demonstrated, further improvements to fault handling capability can be achieved by exploiting population diversity during all phases of the fault handling process. A new paradigm for online EH regeneration using Genetic Algorithms (GAs) called Consensus Based Evaluation (CBE) is developed where the performance of individuals is assessed based on broad consensus of the population instead of a conventional fitness function. Adoption of CBE enables information contained in the population to not only enrich the evolutionary process, but also support fault detection and isolation. On-line regeneration of functionality is achieved without additional test vectors by using the results of competitions between individuals in the population. Relative fitness measures support adaptation of the fitness evaluation procedure to support graceful degredation even in the presence of unpredictable changes in the...
Kening Zhang, Ronald F. DeMara, Carthik A. Sharma