Sciweavers

SLSFS
2005
Springer

Constructing Visual Models with a Latent Space Approach

14 years 4 months ago
Constructing Visual Models with a Latent Space Approach
We propose the use of latent space models applied to local invariant features for object classification. We investigate whether using latent space models enables to learn patterns of visual co-occurrence and if the learned visual models improve performance when less labeled data are available. We present and discuss results that support these hypotheses. Probabilistic Latent Semantic Analysis (PLSA) automatically identifies aspects from the data with semantic meaning, producing unsupervised soft clustering. The resulting compact representation retains sufficient discriminative information for accurate object classification, and improves the classification accuracy through the use of unlabeled data when less labeled training data are available. We perform experiments on a 7-class object database containing 1776 images.
Florent Monay, Pedro Quelhas, Daniel Gatica-Perez,
Added 28 Jun 2010
Updated 28 Jun 2010
Type Conference
Year 2005
Where SLSFS
Authors Florent Monay, Pedro Quelhas, Daniel Gatica-Perez, Jean-Marc Odobez
Comments (0)