Abstract—Energy efficiency is critical for wireless sensor networks. The data gathering process must be carefully designed to conserve energy and extend the network lifetime. For applications where each sensor continuously monitors the environment and periodically reports to a base station, a tree-based topology is often used to collect data from sensor nodes. In this work, we study the construction of a data gathering tree to maximize the network lifetime, which is defined as the time until the first node depletes its energy. The problem is shown to be NP-complete. We design an algorithm which starts from an arbitrary tree and iteratively reduces the load on bottleneck nodes (nodes likely to soon deplete their energy due to high degree or low remaining energy). We show that the algorithm terminates in polynomial time and is provably near optimal. 1
Yan Wu, Sonia Fahmy, Ness B. Shroff