Sciweavers

DL
2000
Springer

Content-based book recommending using learning for text categorization

14 years 5 months ago
Content-based book recommending using learning for text categorization
Recommender systems improve access to relevant products and information by making personalized suggestions based on previous examples of a user's likes and dislikes. Most existing recommendersystemsuse social ltering methods that base recommendations on other users' preferences. By contrast, content-based methods use information about an item itself to make suggestions. This approach has the advantage of being able to recommended previously unrated items to users with unique interests and to provide explanations for its recommendations. We describe a content-based book recommending system that utilizes information extraction and a machine-learning algorithm for text categorization. Initial experimental results demonstrate that this approach can produce accurate recommendations. These experiments are based on ratings from random samplings of items and we discuss problems with previous experiments that employ skewed samples of user-selected examples to evaluate performance.
Raymond J. Mooney, Loriene Roy
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2000
Where DL
Authors Raymond J. Mooney, Loriene Roy
Comments (0)