Contification is a compiler optimization that turns a function that always returns to the same place into a continuation. Compilers for functional languages use contification to expose the control-flow information that is required by many optimizations, including traditional loop optimizations. This paper gives a formal presentation of contification in MLton, a whole-program optimizing Standard ML compiler. We present two existing algorithms for contification in our framework, as well as a new algorithm based on the dominator tree of a program's call graph. We prove that the dominator algorithm is optimal. We present benchmark results on realistic SML programs demonstrating that contification has minimal overhead on compile time and significantly improves run time.