— We present a controller for a quadrupedal robot statically walking on known rough terrain. The controller has both deliberative and reactive components for task specific control issues, such as impassable terrain and unmodeled foot slippage. The controller architecture supports multiple gaits, and we present both a stable omnidirectional gait and a faster directional gait. The robot successfully negotiates obstacles up to 7.5 cm (≈40% leg length) tall and navigates over rocky terrain.
John R. Rebula, Peter Neuhaus, Brian V. Bonnlander