State-of-the-art approaches for unsupervised keyphrase extraction are typically evaluated on a single dataset with a single parameter setting. Consequently, it is unclear how effective these approaches are on a new dataset from a different domain, and how sensitive they are to changes in parameter settings. To gain a better understanding of state-of-the-art unsupervised keyphrase extraction algorithms, we conduct a systematic evaluation and analysis of these algorithms on a variety of standard evaluation datasets.