A recent development in radio astronomy is to replace traditional dishes with many small antennas. The signals are combined to form one large, virtual telescope. The enormous data streams are cross-correlated to filter out noise. This is especially challenging, since the computational demands grow quadratically with the number of data streams. Moreover, the correlator is not only computationally intensive, but also very I/O intensive. The LOFAR telescope, for instance, will produce over 100 terabytes per day. The future SKA telescope will even require in the order of exaflops, and petabits/s of I/O. A recent trend is to correlate in software instead of dedicated hardware, to increase flexibility and to reduce development efforts. We evaluate the correlator algorithm on multi-core CPUs and many-core architectures, such as NVIDIA and ATI GPUs, and the Cell/B.E. The correlator is a streaming, real-time application, and is much more I/O intensive than applications that are typically imp...
Rob van Nieuwpoort, John W. Romein