Semantic concept detection has emerged as an intriguing topic in multimedia research recently. The ability to interpret high-level semantics from low-level features has been the long desired goal of many researchers. In this paper, we propose a novel framework that utilizes the ability of multiple correspondence analysis (MCA) to explore the correlation between different items (feature-value pairs) and classes (concepts) to bridge the gap between the extracted low-level features and high-level semantic concepts. Using the concepts and benchmark data identified and provided by the TRECVID project, we have shown that our proposed framework demonstrates promising results and performs better than the Decision Tree (DT), Support Vector Machine (SVM), and Naive Bayesian (NB) classifiers that are commonly applied to the TRECVID datasets.