A great challenge for web site designers is how to ensure users' easy access to important web pages efficiently. In this paper we present a clustering-based approach to address this problem. Our approach to this challenge is to perform efficient and effective correlation analysis based on web logs and construct clusters of web pages to reflect the co-visit behavior of web site users. We present a novel approach for adapting previous clustering algorithms that are designed for databases in the problem domain of web page clustering, and show that our new methods can generate high-quality clusters for very large web logs when previous methods fail. Based on the high-quality clustering results, we then apply the data-mined clustering knowledge to the problem of adapting web interfaces to improve users' performance. We develop an automatic method for web interface adaptation: by introducing index pages that minimize overall user browsing costs. The index pages are aimed at providi...