We propose a novel approach for activity analysis in multiple synchronized but uncalibrated static camera views. We assume that the topology of camera views is unknown and quite arbitrary, the fields of views covered by these cameras may have no overlap or any amount of overlap, and objects may move on different ground planes. Using low-level cues, objects are tracked in each of the camera views independently, and the positions and velocities of objects along trajectories are computed as features. Under a generative model, our approach jointly learns the distribution of an activity in the feature spaces of different camera views. It accomplishes two tasks: (1) grouping trajectories in different camera views belonging to the same activity into one cluster; (2) modeling paths commonly taken by objects across camera views. To our knowledge, no prior result of co-clustering trajectories in multiple camera views has been published. Advantages of this approach are that it does not require f...
Xiaogang Wang, Kinh Tieu, W. Eric L. Grimson